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A normal mode analysis is used to determine the stability of a set of mixed hyperbolic/ellip- 
tic equations. The analysis is illustrated for a finite difference solution of the two-dimensional 
incompressible Euler equations on a rotating reference frame. The normal modes have a 
boundary layer structure which simplifies the analysis. One unstable and two stable sets of 
boundary conditions are analysed and the analysis results are confirmed with numerical 
experiments. 0 1988 Academic Press, Inc. 

INTRODUCTION 

In the course of developing a two-dimensional nondivergent model of ocean 
circulation, a numerical instability was encountered. A series of experiments soon 
demonstrated that this instability arose from an unsuitable implementation of the 
boundary conditions. The original instability occurred with the full nonlinear 
equations, a spatially dependent Coriolis parameter, and rigid boundary conditions 
on all four sides of a rectangular domain. However an instability still occurs with 
linear equations, a constant Coriolis parameter, and boundaries which are periodic 
on the east and west and rigid on the north and south. Since this latter problem is 
much easier to analyse, it is the one considered in this study. 

Most stability theory for finite difference models of hyperbolic initial boundary 
value problems is based on a classic yet complex paper by Gustafsson, Kreiss, and 
Sundstrom [ 1 ] (henceforth GKS). Unfortunately their normal mode analysis for 
stability is not applicable for this problem because one of our governing equations 
is elliptic. Although we make no attempt to extend GKS theory to our set of mixed 
hyperbolic/elliptic equations, we do demonstrate that with a combined normal 
mode and boundary layer analysis (that has some similarities to a GKS analysis), 
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our unstable mode can be predicted with high accuracy! In particular, our analysis 
shows that the instability arises solely from the boundary conditions. 

In addition to the one set of unstable boundary conditions, two other sets of 
boundary conditions are also analysed and shown to be stable. Numerica 
calculations and experiments confirm the analysis and indicate that these latter two 
conditions are also stable for the more complicated nonlinear problem. One of 
these stable conditions was chosen for our subsequent ocean circulation model 
experiments [ 21. 

Though the analysis is illustrated for the nondivergent primitive equations as 
applied to ocean modelling, it should also be suitable for the incompressible E 
equations (e.g., Batchelor [3]) and their many applications. Furthermore, 
analysis is not restricted to one particular finite difference scheme. An analysis 
similar to the one presented here suggests that boundary layers also govern the 
stability of our numerical model when the approximating finite difference scheme is 
based on an Arakawa B (e.g., Mesinger and Arakawa [“t]) rather than an Arakawa 
C lattice. 

GOVERNING EQUATIONS 

Governing equations for this problem are the two-dimensional linearized incom- 
pressible Euler equations on a rotating reference frame. In an oceanographic setting 
these equations are referred as the nondivergent primitive equations. Ass~rni~~ 
linear drag and a constant Coriolis parameter, these equations are 

$ii+g+lu=F, 
ap $+fu+-+Tv=G, 
aY 

“+a”,(), 
ax ay 

where 
u(x, y, t) = x component of velocity, 

v(x, y, t) = y component of velocity, 

p(x, y, t) = pressure per unit density, 

F(x, y) = x component of forcing, 

G(x, y) = y component of forcing, 

f = Coriolis parameter, 

z = bottom friction parameter. 
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These equations are solved on a rectangular domain with periodic boundary 
conditions at x = 0 and x = L,, and rigid (free-slip) boundary conditions (i.e., u = 0) 
at y=Oand y=Lz. 

In order to solve these equations numerically, (lc) may be replaced with a 
Poisson equation for p. This approach, rather than the more common stream- 
function-vorticity reformulation (e.g., Roache [S] ), was chosen in order to avoid 
the calculation of a wall vorticity (see [2] for further details). In particular, taking 
a( la)/ax + a( lb)/ay and substituting (lc) yields 

(2) 

Neumann boundary conditions for (2) at y = 0 and y = L, are obtained by 
substituting u = 0 into (lb). They are 

ap -+fi=G. 
aY 

TrfE NUMERICAL SOLUTION 

Equations (la), (lb), (2) are solved numerically with a linite difference method 
which uses an Arakawa C lattice [4] spatial discretization and leapfrog time- 
stepping. The spatial stencil is shown in Fig. 1. 

FIG. 1. Spatial stencil for the Arakawa C lattice. 
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Assuming dx = Ay and setting I= 1, M and j= 1, N as indices in the X, y 
directions, respectively, the finite difference equations corresponding to (la), (lb) 
are 

(~;fl- ~;7’)/2At-$f(~~;i+ V;j+l +“Y-I,~+‘;-I,~+I) 

+ (p;j-p~- l,j)/AX + az(U;T1 + u~~“)=F~j, 

(~;j+~-V~J')/2At+$f(U;ji-u;+,,j+ld;j-1+";+l,j-1) 

+ (P~~-P;~_,)/Ax+~~(V;,+~+ VTJl)=GTj. 

Rather than applying finite differences directly to (a), a specific equation is 
derived by combining (4a), (4b) with the following discretization of (1~) 

(u;+l,j , , -V;j)lAX=Q. -lqj+qj+, 64c3 

Taking the difference between (4~) at levels n + 2 and n, and substituting from (4a), 
(4b) yields a finite difference approximation to (2), 

that maintains discrete nondivergence. This Poisson equation is solved with the 
direct solver BLKTRI from the NCAR library [6]. 

The numerical implementation of boundary condition (3) is crucial for stability. 
We have followed two options. The first option, though more complicated in its 
derivation, produces the instability whose analysis forms the crux of this study. The 
second option is more straightforward and stable. However, we show that its 
stability can be predicted by the same analysis. 

(I) The first and seemingly natural option is to impose a condition that is 
spatially centered over the outermost pressure point, rather than over the true 
boundary which lies half a grid interval beyond. Approximate Neumann conditions 
at these most northern and most southern p points are obtained by averaging 
Eq. (4b) for the v points on the boundary and one grid interval in from the 
boundary. For example, at the northern boundary where j = N and vzN+ I = 0 for 
all k and n, the Neumann condition derived in this manner is 
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The implementation of this condition has two snags. The first is that pLN+ 1, 
UI,N+lv and %+l,N+l are fictitious points beyond the northern boundary. This snag 
is overcome in the NCAR Poisson solver by combining (6) with (5). In particular, 
substituting for P[,~+ 1 from (6) into (5), yields the following special version of (5) 
when .j = N: 

(P ;:1’N + P;f:,N +2P;;‘,-4P33/Ax2- u”;;tv~N++‘~2+vI”))/dx 

-f(u2~‘+ul=,:N+U;1=l1+U;=ltN--))/2Ax-f(v~=~N-v;+~N)/4Ax 

= (F;,+l;N - F;N” - 2G$)/Ax. (7) 

Note that the z.Q~+~ and ~,+r,~+r terms have cancelled. A similar special version of 
(5) is also used when j = 1. 

The second snag is that v~,~ does not yet exist at time level n + 2. Consequently it 
must be approximated. Two approximations were tried. The first was 

and the second was 

n-t-2 
h,N 

-v2N)+~~(v~;2+y” ),(vz~‘-t’;N)+l~(v;=l+l)” ) (8b) 
2At 2 3 LN At 2 2 1.N. 

When (8a) is substituted into (7) (and a similar approximation is used at j = l), the 
numerical model is stable. However, when approximation (8b) is used instead, the 
numerical model is unstable. Details of this instability and its associated analysis 
are given in the next section. 

(II) The second option for implementing boundary condition (3) is to assume 
that the boundary for the discrete Poisson equation lies on the true boundary, Ax/2 
beyond the outermost pressure point. The Neumann condition at the northern 
boundary, namely, 

(P n+l 
LN+l -P2~‘)/Ax+$f(uZ~:,+u;=,t,+1+u;~l+U;=11N)=G;~:1, (9) 

is now obtained by setting vl, N + 1 = 0 in (4b). As before, the fictitious points P~,~+ 1, 
%,N+l* and Ul+l,N+l are eliminated by substituting from (9) into (5) when j = N. 
The special version of (5) now becomes 

(P ;=~~N+PP;~~N+P;~~~-~P;~;:~)/AX’ 

-f(~;~‘+~;~,t,+~;~~,,_,+~~,~1)/4Ax-f(v~~~N-vv;,t,)/4Ax 

= (F;,+,’ N - F;N’ l- GZ ;: l )/Ax. (10) 
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A similar equation can be derived when j= 1. When condition (10) and its j= 1 
analog are used, the model is stable. 

The major focus of this paper is the analysis of the numerical instability that 
arises when approximation (8b) is substituted into condition (7). However, the 
same analysis confirms the stability of boundary condition (10) and the condition 
that results when @a) is combined with (7). These analyses are detailed in the next 
sections. 

THE STABILITY ANALYSIS 

The first step of our analysis is to assume solutions of the form 

where j= 1, N; 1= 1, M; i=(-1)“‘; IC is the wavenumber in the x direction; and 
I?J~, Vi, Pj are complex-valued amplitudes. Since the eastern and western boundaries 
are periodic, IC can only assume a finite number of real values. In particular, if 
dx= L,/(M- 1) then 

K= +2ns 
--M--l 

where s = 1, . . . . (M- 1)/2. 
The second step in our analysis is to assume a particular form for the ~~l~t~d~s 

in (11). With reference to Fig. 2, normal velocities lying along the northern and 
southern boundaries are v[,,,+ I and v[,i, respectively. They have the value zero. 
Amplitudes for the interior variables v/,*, u[,~, P!,~, . . . . ~i~,~- 1, ul,+ I, pI,+ 1, ~l[,~ 
are then assumed to have the form 

uj 

i) i 

uo@) &- Wf lW)p 
vj =c v,@) &(i- CN+~)P)P 3 
pi flEY po(p) &(i-(N+ l)/Z)p 

where for a given K, 9 is the set of all admissable complex wavenumbers p in the y 
direction. No assumptions are made for the amplitudes P,, U,, I’,, U, , associate 
with the boundary variables ps,,, qN, prl, and u2, 1. 

The third step of the analysis disregards the boundary conditions and finds 
admissable values for p based on the assumed interior form of the solution. This 
step of the analysis is analogous to finding the Cauchy solution in a GKS a~a~y§~s. 
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FIG. 2. Interior and boundary variables for the normal mode analysis. 

Using these p values and matching boundary and interior solutions, the amplitudes 
U,, V,,, PO, U1, UN, PI, P,, and the amplification factor, 1, can then be calculated. 

Substituting (11) into (4a), (4b), and (5) yields the matrix equation 

where 

A2-l T 
m+j(A2+1) -fCOS(K/2) cos(p/2) 

fcos(rc/2)cos(p/2) J2-l 7 
m+j(1*+1) gsin(d2) 

if x cos(k-/2) sin p if - dx cos(p/2) sin IC 
2cos~+2cosp-4 

Ax2 

(14b) 
For a nontrivial solution to (14) it is necessary that 

det(A) = 0. 

This is true when either 

(15) 

I= *{(l--z At)/(l +T At)}“2 (164 
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01 

coslc+cosp-220. (l6b) 

Since rc is real, it follows that the interior solution which satisfies (16b) will have its 
y-directional wavenumber given by 

p=icosh-‘(2-cosx). (1V 

As the governing equations (1) do not have growing solutions when z > 
numerical stability for the interior problem is ensured when 

/AI < 1. (18) 

(Note that condition (18) is stronger than GKS stability which requires IL/ d 
1 i- O(dt).) Furthermore since r > 0, (16a) implies that (18) is always satisfied. An 
unstable mode must therefore satisfy (17). 

Notice, however, that (17) does not include 3, and therefore (unlike what usually 
occurs for the Cauchy solution in a GKS analysis) does not lead to a stability 
constraint. This result is a direct consequence of the time independence of the 
Poisson equation. It means that an instability must arise from unsuitable boundary 
conditions. 

The fourth step of our normal mode analysis finds the particular boundary an 
interior solutions that also satisfy the boundary conditions. From (17) note that for 
each IC, there are two admissable h values, p = +ib with b > 0. As given by (13 ), the 
separable form of the solution in the y direction is thus a linear combina 
terms e(j-(N+l)12)b and ,-(i-(N+l)/2)b. S’ mce the former term domin 
northern boundary (j= N) and the latter term dominates at the southern 
(j= l), we need only consider one value of 12 at each boundary. He 
common in two-point boundary value analyses (e.g., Carrier and Pearson 
effects of the boundaries can be isolated from each-other. 

Consider the northern boundary. Substituting (11) and (13) i 
homogeneous version of (7) with approximation (8b) yields (to order e--(N--!)bf 

‘2 (2cos;“) P,-~cos(l(i2) U, 

= -1 (2ei~~2’)p) PO+% Uoe’fN-1)l”c0S(fcC/2) 

Using u[,~+ i = v[+ l,N+ 1 = 0, the same substitutions in (4a) and (4b) for j = N yiel 
(also to order e--(N-l)b) 

W,{ (/2” - 1)/2At + 4r(L2 + 1)) + P,(2iA sin(lc/2))/Ax = $JWV0ei(N-1’2)” cos(rc/2), 
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and 

&+-~UNcos(~/2)+~PNjAx= -V,e i(N- 1’2)p{ (A” - 1)/2At + ;z(i2 + l)} 

- ~fAUoei(N-l)p cOS(lc/2) + P,~ei(N-l)p/Ax. (21) 

These three equations are combined with two from (14). For example, choosing the 
Poisson pressure equation (and using (16b)), and the u momentum equation we get 

(22) 

and 

10” - 1)/2At + $(A2 + l)} U, - fA COS(JC/~) cos(p/2) V, + 2i12 sin(lc/2) P, = 0. 

(23) 

There are now live equations in the six unknowns U,, V,,, P,, P,, U,, 1. After 
some algebra, U,, P,, P,, and U, can be expressed in terms of V,, and A provided 

a4+0/3a3+a2a2+C11a+a,=0, (24) 

for some complex coefficients a3, a2, a,, Q,. The roots of this polynomial determine 
the amplification factors and the stability of the numerical solution. In particular, 
the root with the largest magnitude, A,,,, will dominate the solution as iz increases. 
If /,?,,,I > 1, the solution will be unstable. 

A polynomial of the form (24) also arises when the southern boundary is 
considered in isolation. In fact, with the same K and p = ib rather than p= -ib, the 
amplification factors are the complex conjugates of those arising from the northern 
boundary. (With --IC and p = -ib, the amplification factors for the southern 
boundary are the same as those for the northern boundary with K and p= ib.) 
Consequently, both boundaries contribute equally to the instability. 

The foregoing analysis may also be carried out for the two sets of stable 
boundary conditions. When (10) and its counterpart at the southern boundary are 
used, a fourth-order polynomial of the form (24) also arises. However, when @a) is 
substituted into (7) and a similar condition is employed at the south, (24) becomes 
a fifth-order polynomial in 1. 

CONFIRMATION OF THE ANALYSIS FOR THE UNSTABLE BOUNDARY CONDITIONS 

The following test problems were chosen to demonstrate the accuracy of the 
preceding stability analysis. Periodic boundaries were placed on the east and west, 
and rigid boundaries were placed on the north and south of the rectangular 
domain. Common nondimensional parameters for both problems were f== 1, 
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z = 0.01818, L, = 1, dx = dy = l/(M- l), F= G = 0, while differing parameters 
were: 

I. M=6, N=7, At=0.792, 
II. M= 11, N= 15, At=0.396. 

Uniform random numbers in the range (-0.5,0.5) x 1O-6 were specified for both u 
and v at time step 1, while zero values were assigned at time step zero. The 
associated pressure field at time step 1 was calculated using (5). Constant extra- 
polation of velocity u (i.e., a no-shear condition) was assumed for evaluating tke 
Coriolis terms in equation (4b) adjacent to the rigid boundaries. 

These two test models were run for 400At and 800At, respectively; U, v, p values 
over the last 50At were stored at all grid points. In both cases, the model was 
clearly seen to be going unstable at a uniform growth rate. A least squares analysis 
of all time series over the last 50At was then performed to determine the form of the 
unstable mode. This analysis proceeds as follows. 

Based on the normal mode analysis at the northern and southern boundaries, 
solutions of the form 

were assumed; * denotes complex conjugate, 

is the amplification factor, and uj, vj, pj, Uj, Vj, pj are complex amplitudes. The 
value of 1 at each grid point was then found by fitting the nonlinear function 

2.4; j = r”[B,, cos(d3) + C,, j sin(&)] (27) 

to each u time series, and similar functions to the v and p time series. Parameters in 
the fit are Y, 0, B, j, and C,j. Although the values of B,, j and C,, j changed for eat 
(I, j), for all variables the values 

and 

581/79/l-6 
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emerged for test problems I and II, respectively. And in all cases the residuals after 
the fit were very small. 

Subsequent analyses of the B,j, C,j fields were then performed to determine the 
spatial form of the unstable mode. Substituting 

uj=Qj+iRj=Sj.gi~~ (294 
fjj = Qj + iRj = S;.& (29b) 

into (25) reveals that 

B,,=(Qj+ ~j)cos(Z~)+(-Rj+i?j) sin(lrc), (304 

C,j= (-Qj+ oj)sin(lrc)- (Rj+ Rj)cos(k). (3Ob) 

So the next stage of the analysis required fitting along each row j of the B,, j and 5, j 
arrays, functions of the form (30). In this case, the unknown parameters are Sj, Sj, 
dji, 4j, and JC. For all variables and along all rows, the values 

u = 2rc/5 W) 

and 
~=67c/lO @lb) 

were found for problems I and II, respectively. The residuals from each lit were 
again very small. 

The unstable mode for each of the U, v, p variables therefore has a single 
amplification factor i and a single wavenumber K in the x direction. Furthermore, 
the values are predicted “exactly” by the normal mode analysis. In particular, when 
all the roots of (24) are calculated for all possible real K values, the largest A,,,,, has 
the value given by (28) and is associated with the K given by (31). The values agree 
to at least 4 digits. 

The y-directional form of the unstable mode is given by the Sj, Si, dji, Jj values 
that emerge from fits to B, j and C, j. Table I shows these values for u for problem I. 

TABLE I 

Parameters for the Unstable Mode in the y Direction 

1 0.71544 x 10-6 -2.8593 0.45328 x lo-’ 0.7646 
2 0.16307 x 1O-5 - 3.0496 0.43700 x 10-3 2.8400 
3 0.39765 x 10 --5 - 3.0769 0.14311 x 1o-3 2.8401 
4 0.11818 x 1O-4 - 3.0807 0.46991 x 1O-4 2.8405 
5 0.35993 x 10-d -3.0811 0.15811 x lo-“ 2.8443 
6 0.10991 x 10-3 -3.0812 0.64838 x lo-’ 2.8716 
7 0.11400 x 10-Z 1.1266 0.28447 x 1O-5 3.0620 
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When (31a) is substituted in (17) we get 

/A= fi1.11665. (32) 

Consequently if the interior solution is described by (11) and (13 ), we should have 

and 

‘j _ - - ,-1.11665 = 0.327375, 
sj+l 

(33aj 

s. 1~ e1-11665 = 3.()5&j& 
sj+l 

(33b) 

Table I shows that both relationships are approximately true. Discrepancies are 
larger for the smaller Sj and Sj values but this is probably attributable to the limits 
of machine precision, errors arising from the two least squares tits, an the 
assumption that the two boundaries can be considered in isolation. 

The normal mode analysis also predicts correctly the numerical solution in the 
boundary layer. In particular, 

Ml u7 
& = uoe2 * 1.11665 

and 

Ul Ul 
-= 
fi, Uoe-2. 1.11665. 

to 4 digits. There is similar agreement between the normal mode and ~~rne~ical 
results for problem II. 

CONFIRMATION OF THE ANALYSIS FOR THE STABLE BOUNDARY CONDITIBNS 

When 
namely, 

0) 
(ii) 

problems I and II are run with the two stable boundary cQnditi~~s, 

(10) and its j = 1 analog, 
(7) with approximation @a) and its j = 1 analog, 

it is much more difficult to recover I,,,. This is because there are several I values 
that are very close in magnitude. Therefore a different approach is required to verify 
the amplification factors predicted by the normal mode analysis. The following 
tactic is adopted. 

Assume that (4a), (4b), (5) have solutions of the form given by (1 I). Substituting 
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(11) into the homogeneous difference equations away from the northern and 
southern boundaries yields 

{n(l+zdt)-l-l(l-zdt))uj/2dt 

-~fCOS(X/2)(Uj-tUj+1)+2isin(K/2)J7j/Ltx=0, Pa) 

(2(l+zdt)-l-‘(l-zdt))vj/2dt 

+~fcOS(lc/2)(uj+uj-l)+(Pj-Pj-l)/dX=0, Pb) 

f2Ccos Icw2)Pj+ Pj+l + pj- l}/dX2 - ffi sin JC(aj + Vi+ ,)/AX 

+ 4fcos(rc/2)(uj+ l - uj- ,)/Ax = 0. (35c) 

Similar substitutions are also made for the special versions of these equations 
adjacent to the northern and southern boundaries. 

Defining 

(36) 

Eq. (35) and its counterparts at the boundary can be written in matrix form as 

Bz=0. 

For a nontrivial solution, it is necessary that 

(37) 

det( B) = 0. (38) 

(Note the normal mode analysis also solves (37) by assuming amplitudes of the 
form (13) for the interior variables. This matrix approach is more general.) Since 
the numerical value of a matrix determinant varies with the matrix scaling, we 
replace (38) with the equivalent condition, 

y=o (39) 

for at least one eigenvalue y of B. So the amplification factors il are precisely those 
values that cause at least one eigenvalue of B to satisfy (39). Calculation of these Ls 
proceeds as follows. 

Assume specific values off, r, dx, dt, N, and M. For all possible real values of K 
and initial values of 1 that are close but not identical to those predicted by the 
normal mode analysis, solve the problem 

minimize )yminI with respect to I, 

where ymin = the eigenvalue of B(I) with the smallest magnitude. 
The solution to this problem is found using NAG [8] eigenvalue and 

unconstrained optimization routines. In all cases, the minimization confirmed that 
the amplification factors predicted by the normal mode analysis do cause B to have 
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a zero eigenvalue. In particular, with boundary condition (10) and both problems I 
and II, the normal mode analysis predicts that all the amphfication factors are 
given by (24) and its analog at the southern boundary. This is confirmed by the 
eigenvalue solution to (38). When approximation (Sa) is substituted into boundary 
condition (7) and a similar condition is used at the southern boundary, the normal 
mode analysis predicts the following amplification factors for problem I: 

(i) when IC = 27115; A = kO.985702, 0.985922e-i0.00”768, 0.992472ei2.9q’q7, 
0.244897ei0.15”3g4, 

(ii) when IC =4rc/5; 2 = kO.985702, 0.985729e-“0.0w622, 0.987139e’3.~7866~ 
Q.155194ei0~0”3555. 

Again all these values are confirmed by the eigenvalue solution to (38). 
The amplification factors (both stable and unstable) that arise when using 

approximation (8b) in boundary condition (7) (and its counterpart at the southern 
boundary) were also confirmed with the eigenvalue solution to (38). 

SUMMARY AND CONCLUSIONS 

IIt has been demonstrated that with a combined normal mode and boundary 
layer analysis (that has some similarities to a GKS analysis), the numerical stability 
of a set of mixed hyperbolic/elliptic equations can be determined. In particular, it is 
shown that the numerical solution of the sample ocean circulation problem is 
characterized by the existence of a numerical boundary layer, and the revised 
stability analysis requires special treatment there. The general interior solution is 
shown to be unconditionally stable in the absence of boundaries. Instability is thus 
governed by the choice of boundary conditions. One set of unstable and two sets of 
stable boundary conditions are analysed. The amplification factors predicted by the 
normal mode analysis are confirmed by either running a numerical model and 
finding the unstable mode, or numerically calculating the eigenvalues of a matrix 
associated with the entire grid. 

Though the analysis is illustrated for the nondivergent primitive equatioms as 
applied to ocean modelling, it should also be suitable for the Euler equations and 
their many applications. Furthermore, the analysis need not be restricted to finite 
difference schemes based on an Arakawa C lattice. An analysis similar to the 
preceding one suggests that boundary layers also exist and govern the numerical 
stability when Eqs. (la), (lb), and (2) are approximated with a finite difference 
scheme that uses an Arakawa B lattice. 
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